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Elastic constants of some intermetallic compounds as determined by 
the rectangular parallelepiped resonance method* 
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Abstract 

The three elastic stiffness constants of various Ni-base intermetallic compounds Ni3X with L12 structure have 
been determined by the rectangular parallelepiped resonance method. Two types of specimen chamber were 
constructed for low temperature (down to 90 K) and for high temperature (up to 1200 K) measurements. In 
order to reduce the amount of numerical calculation needed to derive the values of elastic constants from the 
resonance spectrum, we have developed a systematic and efficient method of analysis, which is valid for crystals 
of cubic symmetry. 

1. Introduction 

In recent years, the investigation of intermetallic 
compounds has been one of the subjects of intensive 
research activity. While extensive investigations have 
been performed on the plastic properties of various 
intermetallic compounds, the investigation of elastic 
properties has been rather limited. The knowledge of 
single-crystal elastic constants is the essential basis for 
the real understanding of the elasticity of the relevant 
material. 

Measurements of single-crystal elastic constants have 
usually been performed by measuring the velocity of 
elastic waves propagating in a material; the specimen 
size required is typically about a 10 mm length. Growth 
of single crystals of intermetallic compounds with such 
a size is not always easy. An alternative method is the 
rectangular parallelepiped resonance (RPR) method 
which allows the use of smaller specimens. The the- 
oretical basis of the method has been given by Demarest 
[1 ], who derived the resonance frequencies of a vibrating 
specimen with cubic symmetry and shape. Ohno has 
extended the theory for a rectangular parallelepiped 
specimen of orthorhombic symmetry [2], and Ohno et 

al. dealt with trigonal symmetry [3]. Extensive efforts 
have been made by Migliori et al. to obtain reliable 
values of elastic constants by the RPR method [4]. 
Although there have been several reports of elastic 
constants determined by the RPR method, most of 
them are on materials for which the elastic constants 
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were previously determined by some other methods. 
This is because of the difficulty in deducing the values 
of the elastic constants from a measured resonance 
spectrum. It is straightforward to calculate the resonance 
frequencies if the elastic constants are known, but the 
reverse procedure is not at all simple. Until now the 
determination of the elastic constants from a given 
resonance spectrum has therefore been done by trial 
and error, which is inevitably very time consuming. A 
systematic method of data analysis is badly needed. 

The present authors have developed such a systematic 
method valid for specimens with cubic symmetry [5]. 
The method has been applied to measure elastic con- 
stants of the intermetallic compounds Co3Ti and CoTi 
[6], and a series of Ni-based L12-type compounds [7], 
at room temperature. High temperature measurements 
were also made for some compounds to reveal the 
anomalous temperature dependence of the elastic an- 
isotropy for Ni3Ge [8]. The aim of this paper is to 
review these investigations performed by the present 
authors. 

2. Experimental apparatus 

The system for measuring the resonance spectrum 
is shown in Fig. 1. A rectangular parallelepiped specimen 
is held at the body diagonal corners between the two 
piezoelectric transducers. A sinusoidal signal from the 
synthesized function generator is applied to one of the 
transducers. If the specimen is in resonance with the 
applied frequency, the mechanical vibration is trans- 
mitted to the other transducer. The output signal is 
amplified, rectified and fed to the analogue-digital 
converter, and then the digitized data are transferred 
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Fig. 1. Schematic diagram showing the RPR method. 

(a) (b) 

Fig. 2. Specimen chambers for (a) low and (b) high temperature 
measurements. 

to the personal computer. By sweeping the excitation 
frequency, a resonance spectrum is obtained for the 
specimen in a certain frequency range, which is usually 
from 100 to 1500 kHz. Measurements below and above 
room temperature are made in separate specimen cham- 
bers, with a common control and data acquisition system. 

The specimen chamber for low temperatures is sche- 
matically illustrated in Fig. 2(a); the chamber is first 
evacuated and is filled with helium gas during mea- 
surements. The specimen temperature is changed by 
a computer-controlled heater. The accuracy of the 
specimen temperature is about 0.3 K in the temperature 
range from 77 K to room temperature. 

Measurements at high temperatures but below the 
piezoelectric Curie temperature of the relevant trans- 

ducer material can in principle be made by using the 
low temperature chamber in Fig. 2(a), although the 
deterioration of the transducer itself and of the electrode 
connection on exposure to high temperatures in vacuum 
might considerably reduce the range of temperatures 
for successful measurements. In order to avoid such 
a difficulty, we constructed a high temperature chamber, 
adopting the design produced by Goto and Anderson 
[9], as schematically shown in Fig. 2(b). The specimen 
is held by the two alumina buffer rods about 5 mm in 
diameter and 170 mm in length, which guide the vi- 
bration from or to the piezoelectric transducers. The 
buffer rods are supported by collimators with a spring 
to hold the specimen gently so as to accommodate 
thermal expansion. Measurements are made in vacuum 
so as to avoid the oxidation of specimens. 

3. M e t h o d  o f  a n a l y s i s  

For a rectangular parallelepiped specimen of known 
dimensions and density, a set of resonance frequencies 
can be calculated if the values of elastic constants are 
given; the prescription has been given, e.g. by Demarest 
[1]. There is no straightforward way, however, for the 
reverse process of deriving the value of elastic constants 
from a given resonance spectrum. Therefore the analysis 
has to be made essentially by trial and error; a set of 
frequencies calculated for an assumed set of elastic 
constants is compared with a set of observed frequencies, 
and the procedure is repeated until a satisfactory agree- 
ment is obtained. In order to carry out this procedure 
efficiently, we developed a method valid for crystals of 
cubic symmetry, as described below. 

The elasticity of a cubic crystal is specified by the 
three independent elastic constants Cll , c12 and c44. In 
analysing the resonance spectrum, it is convenient to 
deal with the following set of three elastic constants 
or parameters: the shear modulus of the {100} planes 
c44; Poisson's ratio along the (100) direction v; and 
the anisotropy factorA, or the ratio of the shear modulus 
on {100} planes to that on {110} planes. The latter two 
parameters are defined by 

C12 
u--  - -  (1)  

Cll JI- C12 

2c~ (2) 
Cll --C12 

Note that c44 can be regarded as a scaling factor of 
the elastic constants which determines the absolute 
magnitude of the resonance frequencies, while the two 
parameters v andA define the structure of the resonance 
spectrum. 

From the lattice stability condition, the elastic con- 
stants must satisfy the following three inequalities for 

A _  I 
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the cubic system: 

c .  + 21c121 > 0 

C11--C12>0 

C44 ~> 0 

In terms of v and A, these conditions can be rewritten 
as  

1 
- i < v< - ( 6 )  

2 

A > 0  (7) 

No real material is known to have a negative value of 
v. Thus, eqn. (6) can be replaced with 

1 
0 < v < - ( 8 )  

2 

In Fig. 3 are plotted the values of A vs.  v for various 
materials with cubic symmetry: b.c.c., f.c.c., or the 
diamond cubic structures [10]. Note that the data points 
lie near the full curve which represents the Cauchy 
relation C12/C44=1, or  A - 2 v = 2 A v .  The values of A 
for most materials are smaller than 10, although some 
b.c.c, metals have larger values. Thus, in the search 
for the values of the elastic constants, we now have a 
very good map indicating the areas to be examined 
carefully. The greater advantage of dealing with the 
set c44, A and v rather than with Can, c12 and cll is 
evident; for the latter, it is difficult to predict plausible 
ranges of values for c12 and c~. 
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Fig. 3. Values of the anisotropy factor A and Poisson's ratio v 
for monatomic solids with cubic symmetry: O, f.c.c.; A, b.c.c.; 
r7, diamond cubic; - - ,  Cauchy relation c~2/c44 = 1 orA - 2v = 2,4 v. 

Preceding the analysis of a measured spectrum, a 
set of resonance frequencies are calculated for various 

(3) combinations of v and A and stored in a computer. 
(4) The analysis is made by comparing the measured set 

of resonance frequencies with the stored ones. The 
(5) results are refined by the method of least squares; the 

details were described in a previous paper [5]. 

4 .  R e s u l t s  a n d  d i s c u s s i o n  

Single-crystal elastic constants were determined at 
room temperature for a series of Ni-base L12 compounds 
Ni3X with X= Mn, Fe, A1, Ga, Ge and Si [7]. Table 
1 lists the composition, dimensions and density of 
specimens used for measurements. The elastic constants 
are listed in Table 2, together with the data for NiaAI 
[11] and Ni [12]. Here, c' is the shear modulus of 
(ll0)[li0] type: ¢'=(C11--C12)/2. Figure 4 shows for 
NiaGe the temperature dependence of the elastic moduli 
c44 and c' and anisotropy factor A [8]. 

In the present method of analysis, the observed set 
of frequencies are compared in turn with the precal- 
culated and stored sets of frequencies for various com- 
binations of Poisson's ratio v and the elastic anisotropy 
A. As an example, the experimental resonance spectrum 
and several sets of calculated frequencies are shown 

TABLE 1. Specimens used for the measurements  of the elastic 
constants 

Specimen Composition Edge length (mm) Density 
(at.%) ( x  103 kg 

x y z m -3) 

NiaMn 23.5Mn 3.613 3.743 3.889 8.12 
Ni3Fe 25.0Fe 4.118 4.091 4.453 8.52 
Nia(AI, Ti) 15A1-9Ti 2.825 2.794 2.740 7.50 
Ni3Ga 24.7Ga 2.483 3.055 2.246 8.34 
Ni3Ge 25.0Ge 4.639 4.638 4.718 8.92 
Ni3(Si, Ti) 13Si-9Ti 4.754 4.621 4.718 7.91 

TABLE 2. Elastic constants (GPa) of the L12 intermetallic 
compounds [7] a 

cll C12 c44 C' v .4 

Ni3Mn (order) 244.5 165.3 145.0 39.6 0.403 2.903 
Ni3Mn (disorder) 236.9 161.9 110.6 37.4 0.406 2.960 
Ni3Fe (order) 250.8 153.8 123.0 48.5 0.380 2.535 
Ni3Fe (disorder) 236.1 148.5 119.9 43.8 0.386 2.738 
NiaA1 221.0 146.0 124.0 37.5 0.398 3.307 
Ni3(AI, Ti) 259.8 176.9 124.3 41.5 0.405 2.997 
Ni3Ga 191.1 123.2 107.5 33.9 0.392 3.165 
Ni3Ge 263.0 143.0 103.0 60.0 0.352 1.717 
Ni3(Si, Ti) 255.0 169.0 120.0 43.0 0.399 2.791 
Ni 250.8 150.0 123.5 50.4 0.374 2.450 

aThe values for Ni3AI and Ni are taken from ref. 11 and ref. 
12 respectively. 
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Fig. 4. Temperature dependence of the elastic moduli c44 and 
c' and anisotropy factor A of Ni3Ge. 
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Fig. 5. Pattern comparison between (a), (b) the experimentally 
measured spectrum of Ni3Ge and (c)-(f) calculated spectra for 
various combinations of anisotropy factor A and Poisson's ratio 
v: (c) A = 1.6, v = 0.36; (d) A = 1.0, v = 0.36; (e) A = 1.4, v = 0.39; 
(f) A =2.0, v=0.30. 

in Fig. 5. In the analysis, only numerical values of 
resonance frequencies are used for the determination 
of elastic constants; the observed spectrum (Fig. 5(a)) 
is represented by the line diagram of Fig. 5(b), which 
should be compared in turn with those of calculated 
spectra in Figs. 5(c)-5(f). After finding a candidate 
combination, in this case Fig. 5(c), the final refinement 
is made by the least-squares method, i.e. by minimizing 
the quantity 

where~ c"~ and~ °b~ are calculated and observed resonance 
frequencies. Finally, the elastic constants c11, clz and 
c44 can be obtained from eqns. (1) and (2). 

In practice, account must be taken of the fact that 
some modes of oscillation are difficult to excite or very 
weakly excited and might be absent in the measured 
resonance spectrum;f? bs corresponding to the calculated 
frequency ~c"~ for a certain i might not be measured. 

The intrinsic difficulty involved in the analysis is lack 
of a knowledge of the type of vibrational mode for 
each resonance frequency of the observed spectrum. 
If the mode of vibration can be experimentally deter- 
mined for each peak in the resonance spectrum, the 
derivation of the elastic constant can be performed 
more reliably. Such efforts are being made in our 
laboratory. 
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